A mathematical model of force generation by flexible kinetochore-microtubule attachments.
نویسندگان
چکیده
Important mechanical events during mitosis are facilitated by the generation of force by chromosomal kinetochore sites that attach to dynamic microtubule tips. Several theoretical models have been proposed for how these sites generate force, and molecular diffusion of kinetochore components has been proposed as a key component that facilitates kinetochore function. However, these models do not explicitly take into account the recently observed flexibility of kinetochore components and variations in microtubule shape under load. In this paper, we develop a mathematical model for kinetochore-microtubule connections that directly incorporates these two important components, namely, flexible kinetochore binder elements, and the effects of tension load on the shape of shortening microtubule tips. We compare our results with existing biased diffusion models and explore the role of protein flexibility inforce generation at the kinetochore-microtubule junctions. Our model results suggest that kinetochore component flexibility and microtubule shape variation under load significantly diminish the need for high diffusivity (or weak specific binding) of kinetochore components; optimal kinetochore binder stiffness regimes are predicted by our model. Based on our model results, we suggest that the underlying principles of biased diffusion paradigm need to be reinterpreted.
منابع مشابه
Mechanisms of force generation by end-on kinetochore-microtubule attachments.
Generation of motile force is one of the main functions of the eukaryotic kinetochore during cell division. In recent years, the KMN network of proteins (Ndc80 complex, Mis12 complex, and KNL-1 complex) has emerged as a highly conserved core microtubule-binding complex at the kinetochore. It plays a major role in coupling force generation to microtubule plus-end polymerization and depolymerizat...
متن کاملBalancing the kinetochore ledger
Reduction of polo-like kinase-1 (Plk1) at kinetochores as cells progress from prometaphase to metaphase is surprising given that the kinase is thought to stabilize kinetochore-microtubule (kt-MT) attachments. In this issue, Liu et al. (2012. J. Cell Biol. doi:10.1083/jcb.201205090) demonstrate that kinetochore-associated Plk1 is a potent suppressor of microtubule plus-end dynamics. The authors ...
متن کاملDirect physical study of kinetochore-microtubule interactions by reconstitution and interrogation with an optical force clamp.
We detail our use of computer-controlled optical traps to study interactions between kinetochore components and dynamic microtubules. Over the last two decades optical traps have helped uncover the working principles of conventional molecular motors, such as kinesin and dynein, but only recently have they been applied to study kinetochore function. The most useful traps combine sensitive positi...
متن کاملKinetochores accelerate centrosome separation to ensure faithful chromosome segregation.
At the onset of mitosis, cells need to break down their nuclear envelope, form a bipolar spindle and attach the chromosomes to microtubules via kinetochores. Previous studies have shown that spindle bipolarization can occur either before or after nuclear envelope breakdown. In the latter case, early kinetochore-microtubule attachments generate pushing forces that accelerate centrosome separatio...
متن کاملTheory of strength and stability of kinetochore-microtubule attachments: collective effects of dynamic load-sharing
Application of pulling force, under force-clamp conditions, to kinetochore-microtubule attachments in-vitro revealed a catch-bond-like behavior. In an earlier paper (Sharma et al. Phys. Biol. (2014) the physical origin of this apparently counter-intuitive phenomenon was traced to the nature of the force-dependence of the (de-)polymerization kinetics of the microtubules. In this brief communicat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 106 5 شماره
صفحات -
تاریخ انتشار 2014